metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Dan-Dan Wang,^a Hong-Jun Zhu,^a Ning Shan,^b Guang-Liang Song^a and Jin-Tang Wang^a*

^aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China, and ^bInstitute of Chemical and Engineering Sciences, The Singapore Government Agency for Science, Technology and Research, 627833, Singapore

Correspondence e-mail: zhuhj@njut.edu.cn

Key indicators

Single-crystal X-ray study T = 180 K Mean σ (C–C) = 0.005 Å R factor = 0.105 wR factor = 0.243 Data-to-parameter ratio = 20.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. The title compound, $K^+ \cdot C_{14}H_9O_3^- \cdot 2H_2O$, was prepared by slow evaporation of an aqueous solution of potassium 2benzoylbenzoate. Potassium cations are coordinated by six O atoms of two 2-benzoylbenzoate anions and three water molecules in a polymeric structure with bridging ligands. There are intermolecular $O-H \cdot \cdot \cdot O$ hydrogen bonds in the crystal structure.

Comment

2,5-Dibenzoylterephthalic acid and 2-benzoylbenzoic acid are significant materials in the synthesis of supramolecular coordination compounds (Jullian *et al.*, 2003; Nakamura & Ukita, 2002). They are also important compounds in the preparation of electron-transport materials (Pika *et al.*, 2003). The synthesis and crystal structures of 2,5-dibenzoylterephthalic acid and $[Na_2(H_2O)_6(2,5\text{-dibenzoylterephthalate})]\cdot4H_2O$ have been reported (Zhu *et al.*, 2005; Wang *et al.*, 2005), as well as 2-benzoylbenzoic acid (Lalancette *et al.*, 1990). This paper presents the results of a single-crystal X-ray diffraction analysis of K(2-benzoylbenzoate)(H_2O)_2.

The structure of (I) is shown in Fig.1, and selected bond lengths and angles are given in Table 1. The coordination around K^+ is defined by six O atoms of two 2-benzoylbenzoate anions and three water molecules, giving a polymeric structure with bridging ligands.

In the crystal structure, water molecules and carboxylate O atoms are also linked by $O-H \cdot \cdot \cdot O$ intermolecular hydrogen bonds, forming a two-dimensional layer structure (Fig. 2 and Table 2).

Experimental

2-Benzoylbenzoic acid was prepared by reaction of phthalic anhydride (9.0 g, 60 mmol) and powdered $AlCl_3$ (15 g, 120 mmol) in benzene (150 ml) with stirring at 338–343 K for three h. Crystals of (I) suitable for diffraction measurements were obtained by slow evaporation of an aqueous solution (10 ml) containing potassium hydroxide (0.2 g, 3 mmol) and 2-benzoylbenzoic acid (0.6 g, 3 mmol) at room temperature. Analysis calculated (%) for compound: C 55.99, H 4.36; found (%): C 55.92, H 4.44.

 $\ensuremath{\mathbb{C}}$ 2006 International Union of Crystallography Printed in Great Britain – all rights reserved

Potassium 2-benzoylbenzoate dihydrate

Received 19 December 2005 Accepted 21 December 2005

Online 7 January 2006

Crystal data

K⁺·C₁₄H₉O₃⁻·2H₂O $M_r = 300.34$ Orthorhombic, *Pbca* a = 10.391 (4) Å b = 7.771 (3) Å c = 33.314 (13) Å V = 2690.1 (18) Å³ Z = 8 $D_x = 1.483$ Mg m⁻³

Data collection

Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 2002) $T_{min} = 0.908, T_{max} = 0.965$ 24641 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.105$ $wR(F^2) = 0.243$ S = 1.374104 reflections 198 parameters H atoms treated by a mixture of independent and constrained refinement

Table 1

. .

Selected geometric parameters (Å, °).

K1-O3 ⁱ	2.746 (3)	K1-O5	2.835 (3)
K1-O4	2.776 (3)	K1-O1	2.959 (3)
K1-O4 ⁱ	2.800 (3)	K1-O3	3.146 (3)
$O3^{i} - K1 - O4$	146.49 (9)	$O4^{i}-K1-O1$	119.42 (9)
$O3^i - K1 - O4^i$	75.09 (9)	O5-K1-O1	155.42 (8)
$O4-K1-O4^{i}$	90.31 (9)	$O3^{i}-K1-O3$	140.70 (9)
$O3^{i} - K1 - O5$	70.92 (8)	O4-K1-O3	69.29 (8)
O4-K1-O5	76.14 (9)	$O4^{i}-K1-O3$	95.08 (9)
$O4^{i}-K1-O5$	74.01 (9)	O5-K1-O3	143.71 (8)
$O3^{i} - K1 - O1$	91.86 (8)	O1-K1-O3	59.52 (7)
O4-K1-O1	121.37 (9)		

Mo $K\alpha$ radiation

reflections

 $\theta = 1.2 - 31.3^{\circ}$ $\mu = 0.41 \text{ mm}^{-1}$

T = 180 (2) K

 $R_{\rm int} = 0.066$

 $\theta_{\rm max} = 31.3^{\circ}$

 $h = -14 \rightarrow 12$

 $k = -11 \rightarrow 10$

 $l = -46 \rightarrow 47$

Block colourless

 $0.24 \times 0.18 \times 0.09 \; \text{mm}$

4104 independent reflections

 $w = 1/[\sigma^2(F_0^2) + (0.0749P)^2]$

where $P = (F_0^2 + 2F_c^2)/3$

+ 2.9686P]

 $\Delta \rho_{\rm max} = 0.36 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.32 \text{ e } \text{\AA}^{-3}$

 $(\Delta/\sigma)_{\rm max} < 0.001$

3667 reflections with $I > 2\sigma(I)$

Cell parameters from 4649

Symmetry code: (i) $-x + \frac{1}{2}, y + \frac{1}{2}, z$.

Table 2				
Hydrogen-bond	geometry	(Å,	°).	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O5-H5B2\cdots O2^{i}$	0.83 (5)	1.93 (5)	2.760 (4)	175 (5)
$O5-H5B1\cdots O2^{ii}$	1.04 (7)	1.81 (6)	2.839 (4)	169 (5)
$O4-H4B2\cdots O5^{iii}$	0.87 (6)	1.91 (6)	2.757 (4)	167 (5)
$O4-H4B1\cdots O2^{iv}$	0.84 (6)	2.14 (6)	2.972 (4)	170 (6)

Symmetry codes: (i) $-x + \frac{1}{2}$, $y + \frac{1}{2}$, z; (ii) $x + \frac{1}{2}$, $-y + \frac{1}{2}$, -z + 1; (iii) -x + 1, -y, -z + 1; (iv) -x, -y, -z + 1.

H atoms attached to O atoms were located in a difference Fourier map and refined freely. Other H atoms were placed in calculated positions (C-H = 0.95 Å) and refined as riding, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine

Figure 1

The structure of the asymmetric unit of (I), together with additional O atoms to complete the K^+ coordination. Displacement ellipsoids are drawn at the 30% probability level. The suffix A corresponds to symmetry code (i) in Table 1.

Figure 2

Intermolecular $O-H\cdots O$ hydrogen bonds (dashed lines) in (I). The suffixes A-D correspond to symmetry codes (i), (ii), (iv) and (iii), respectively, in Table 2.

structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Sheldrick, 2001); software used to prepare material for publication: *SHELXTL*.

The authors thank the Centre of Test and Analysis and the Singapore Government's Agency for Science, Technology and Research for support.

References

- Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Jullian V., Courtois F., Bolbach G. & Chassailng G. (2003). Tetrahedron Lett. 44, 6437–6440.
- Lalancette, R. A., Vanderhoff, P. A. & Thompson, H. W. (1990). Acta Cryst. C46, 1682–1686.
- Nakamura Y. & Ukita T. (2002). Org. Lett. 4, 2317-2320.
- Pika J., Konosonoks A. & Robinson R. M. (2003). J. Org. Chem. 68, 1964– 1972.
- Sheldrick, G. M. (1997). *SHELXS97* and *SHELXL97*. University of Göttingen, Germany.
- Sheldrick, G. M. (2001). SHELXTL. Version 5. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.

Wang, D. D., Zhu, H. J. & Song, G. L. (2005). *Acta Cryst.* E61, m2610–m2612. Zhu, H. J., Wang, D. D. & Song, G. L. (2005). *Acta Cryst.* E61, o2237–o2238.